First Year B.C.A. (Under Science) Semester II

Course Code: BCA 201

Course Title: Computer Organization Total Contact Hours: 48 hrs.

Total Credits: 04 Total Marks: 100

(60 Lectures)

Teaching Scheme: Theory- 05 Lect./ Week

Course Objectives: The objective of this course is to provide a broad overview of architecture and functioning of computer systems and to learn the basic concepts behind the architecture and organization of computers.

UNIT NO.		DESCRIPTION	No. of LECTURES
UNIT 1	1.	Data representation and Computers Arithmetic:	06
		1.1. Decimal, Binary, Octal, Hexadecimal Number system and	
		their inter-conversion, BCD code, Gray code, Excess-3	
		code, ASCII, EBCDIC, Unicode, Concept of parity code.	
		Signed and Unsigned numbers, 1's and 2's complement of	
		binary numbers, Binary arithmetic (Addition, subtraction	
		and subtraction using 1's complement and 2's complement).	
UNIT 2	2.	Logic Gates :	09
		2.1. Introduction to digital signal, positive and negative logic	
		concept, Logic gates – statement, symbol, expression and	
		truth table of basic and derived logic gates	
		(AND,OR,NOT,XOR,XNOR,NOR,NAND), Boolean	
		algebra and identities, De-Morgan's theorem and Inter	
		conversion of logic gates.	
UNIT 3	3.	Combinational Circuits:	07
		3.1. Half adder, Full adder, Half subtractor, Parallel adder,	
		Nibble adder, Multiplexer (up to 4 to 1 MUX), and De	
		multiplexer (up to 1 to 4 DEMUX), Encoder(Decimal to	
		BCD encoder and 3 bit priority encoder), Decoder(3 to 8	
		line decoder using gates only)	
UNIT 4	4.	1	08
		4.1. Concept of sequential circuits; Latch, Flip-flops RS,	
		clocked RS, JK, T, D, Counter -(types: synchronous,	
		asynchronous), upto 3 bit up, down and up-down Counter	
		(asynchronous only), modulo -N counter, shift register (IC	
		7495), Ring counter, Johnson counter.	
UNIT 5	5.	CPU Organization:	07
		5.1. Block diagram of CPU, functions of CPU, general register	
		organization, stack organization (operation of stack, types	
		of stack, register stack and memory stack), block diagram	
		of ALU.	
UNIT 6	6.	• 8	08
		6.1. Memory System Overview, Memory Design, Cache	
		Memory, Internal Memory, External Memory, Virtual	
		Memory.	

UNIT 7	7. I/O Organization:	
	7.1. Introduction, peripheral devices, I/O	
	interface, serial communication (asynchronous	
	and synchronous data transfer). Concept of	
	interrupts, IVT and size of IVT, types of I/O	
	transfer (CPU initiated, interrupt initiated and	
	DMA), DMA controller	08
UNIT 8	8. Architecture of Microprocessor	07
	8086 and parallel Processing:	
	8.1. Block diagram of 8086, 8086 registers,	
	Numerical co-processor concept and block	
	diagram and functional diagram of	
	numerical co-processor. Concept of	
	parallelism, parallel computer structures,	
	concept of pipeline, instruction pipeline,	
	Arithmetic pipeline Concept of RISC and	
	CISC.	

Reference Books:

- 1. Modern Digital Electronics: R.P. Jain.
- 2. Digital Fundamentals: Flod and Jain, Pearson Publication.
- 3. Digital Design: Morris Mano, Prentice-Hall.
- 4. Computer System Architecture: Morris Mano, Prentice-Hall.
- 5. Computer Organization and architecture (6th Edition): William Stalling, Prentice-Hall.
- 6. Microprocessor and Interfacing Programming and Hardware: Douglas Hall, Tata McGraw Hill
- 7. Computer Architecture and Organization by John P Hayes, Tata McGraw Hill.
- 8. Pipelined and Parallel Computer Architecture by Sajjan G Shiva, Prentice Hall. 1996, First Edition